
AOD-A13 2?9 CIRCE A NATURAL LANGUAGE RULE TRANSLATION SYST-EnN F ir
INTERSENSORMU DEFENCE RESEARCH ESTABLISHMENT ATLANTIC
DARTNOUTH (NOVA SCOTIA) J R ELLIS ET AL. NOV 95

UNCLSSIFIED-TC--9/314 F/G 9/2NL

E~mhhhhml

111. 10

I''l

NATIONAL MURFAU OF STANDARS

WIli yRt V l S MtU T MO T E ST CA NlT

;iiti __ 2i~i -: '

• .°o.-o1111- . .lI~ls
- L-

UNLIMITED DISTRIBUTION 0
INational Defence De6fense Nationale

Research and Bureau de Recherche
Development Branch at D6veloppment

TECHNICAL COMMUNICATION 851314
November 1985

N CIRCE: A NATURAL LANGUAGE RULE

(V) TRANSLATION SYSTEM
FOR INTERSENSOR

James R. Ellis -C. Ann Dent

DTICCtE LECTE
JN 2 31986J

Iiij Defence Centre de
Research Rcherches pour la

L~. Establishment DWense C

S Atlantic \\.Alantique

DISTRBUTON STATEMNTAF'

Approved tor public teleagqJCanac!*'Distibuion Unlimited

UNLIMITED DISTRIBUTION

I* National Defence Defense Nationale
Research and Bureau do Recherche - .

Devolopmnent Branch at Developpmnent

CIRCE: A NATURAL LANGUAGE RULE
TRANSLATION SYSTEM
FOR INTERSENSOR

James R. Ellis - C. Ann Dent

November 1985

Approved by C.W. Bright H/Signal Processing Section

DISTRIBUTION APPROVED BY

D/UAD

TECHNICAL COMMUNICATION 85/314

Defence , -- Z. Centre de
Research Rcherches pour la
Establishment D6fense
Atlantic Alniu

Canada

Abstract

> Circe is a set of functions written in LISP as an experiment in natural language processing.
It was developed for knowledge acquisition by the Interensor system, a sonar knowledge-based
inference system. The main function of Circe inputs from either the keyboard or a file a rule
written in English and converts it into a LISP-like data structure. This conversion takes place
in two steps: the English text is first parsed, and then the relevant information is extracted from..-'
the resulting list and assembled into rules. These rules are then written to a file where they
can be used directly by the inference mechanism of Intersensor without further processing. II_.

The paper briefly reviews prior research at DREA in this area, and contrasts the current
system with its predecessors. Implementation problems are discussed, and suggestions for
improvements are given.

RESUME

Circe est un ensemble de fonctions r~dig6es en langage Lisp "
titre d'exp~rience de traitement en langage natural. 11 doit permettre
l'acquisition de connaissances & V'aide du syst&ms Intersensor, syst"me
d'inf~rence explotant une base de connaissances 6tabli i laids d'un
sonar. La fonction principals de Circe introduit & partir d'un clavier
ou d'un fichier une r&gle r6dig6e en anglais et Is convertit en une
structure de donn6es se rapprochant d'une structure Lisp. Cette
conversion so fait en deux 6tapes: Ie texte anglais fait d'abord l'objet
d'une analyse syntaxique; ensuite, ' information pertinente est extraite"
do Is liste r6sultante et transform6e en un ensemble de r6gles. Cos
derni res sent ensuite versfes i un fichier oii eIlas peuvent Wtre

.. exploit6es directement par leas dispositifs d'inf6rence d'Intersonsor.

Dans le document, on analyse bri~vement Is recherche of fectu6e
ant6rieurement au Centre de recherchos pour La d6fense 'Atlantique
(CRDA) et on fait 10 pendant entre le systime courant et ceux qui Ont 6t6
exploitis ant6rieurement. Los probl&mes de mice on place y sent analys6s
et on y fait des suggestions visant & am6liorer 1. systies.

2F
.

.-;...

i .. .% %.- .

* .. - S. - - - ..- 1 MM- - -. - - ..

Contents

Title Page1

Table of Contentsii

1 Introduction1

2 Using Circe 3

3 The Parser 5
A4

4 The Translator 8

5 Possible Improvements 11

6 Design and Implementation Considerations 12

7 Conclusion 14

Appendix 16

A The Grammar Expressed as BNF Rules 16

B The Grammar Displayed as a Tree 1

C Examples of the Grammar Implemented in Circe 21

D An Example of How the Parser Works 22

E Sample Output 23

F How to make Changes to the System 25

F.1 Grammar Changes....................................... 25

F.2 Adding New Tests....................................... 26

F.3 Adding to the Vocabulary.................................... 26

C A Listing of the Parser's Functions 27

H A Listing of the Translator 33

t~ in

* a -

t-

Ntl.'

IV..

.7

I Introduction

Circe is an experiment in natural language understanding and processing. It was designed
to be a development aid for Intersensor, a knowledge-based inference system. (See [61 for more
on Intersensor) Circe was developed to allow a sonar expert with minimal computer expertise
to enter rules for the system in English. Circe attempts to convert the English rule into LISP
code that can be used directly by Intersensor. This conversion takes place in two steps; the
rule is first broken down into its component parts of speech and then this parse is analyzed to
extract and organize the relevant information.

There has been other research carried out at DREA with the same goal as Circe. In 1979,
Mark Rodger 191 wrote a context-free parser using Interlisp, for use on the DEC-20 system. The
program allowed the user to enter his own grammar into the system, and to specify whether
the parser was to be goal or event driven (top-down parsing as opposed to bottom-up). The
program has no apparent connection to Intersensor, and went no further than presenting the
results of the parse to the user. Calliope I [7] , developed by Jennifer Muise, was a top-down,
left-to-right parser. It was intended as a first step towards a larger system that would satisfy
five goals:

1. Accept English input and have a basic understanding of the words used.

2. Parse the input successfully.

3. Convert the English rules into LISP code.

4. Make the code accessible to Intersensor.

5. Provide an explanation facility for the rules (similar to the query answering system for
MYCIN [3])

The original Calliope only went as far as the second goal. It parsed successfully a number of
test rules according to a reasonably complex grammar.

The second Calope [8] accomplished all but the last goal. Like Calliope I, Calliope
II 's grammar was implemented using units in the Athena knowledge representation language
[51 . A unit in Athena is a frame-like data structure. For Calliope, the units contained the
name of a part of speech and some information about it. Calliope II could parse a rule using a
slightly revised version of Calliope I 'a parser, and then insert it into Intersensor's knowledge
base using Athena. Unfortunately its grammar was by necessity very limited. In contrast,
Circe works with a grammar that is larger than that of the original Calliope, and translates
successfully most of the rules that can be formed using its grammar. Unlike Ca~llope, Circe
does not attempt any interface with either Athena, or Intersensor.

.............................. *. - . . -. ...

V . .- . V . * - ~ . ~

Chapter II describes a sesion of Circe. Chapter MI and IV discusses design and imnplu-
mentation details of parser and translater respectively. Chapter V suggests improvements for
Circe while Chapter VI contrasts the current system with its predecessors at DREA.

2

*" .-.

p~.. .o

2 Using Circe

Circe has two major components: the parser and the translator. To run the program
the user must first load the file containing the translator (at the time of writing Bl:>jim-
>circe-translator.bin') and then the file containing the parser and the top-level functions.
(Bl:>jim>circe-parser.bin). Once the files are in the workspace, the user can start the process
by calling the function Circe. The function begins by setting the initial conditions and getting
the first input string. It calls the parser (Perform-test), gives the result to the translator
(Make-rule), and then displays both the resultant LISP code and a translation of that code
back into English. Processing continues with one rule input each loop, until the user signals
that he is finished; at this point Circe prompts for the name of a file in which to write the
rules and the program ends after the writing has been completed.

Immediately after invoking Circe the user is presented with a menu with which he can
change the input and output conditions of the program. The user can specify either terminal
or file input, and whether or not he wishes some intermediate output the program can provide.'
He can also change the default file that the program will read from if file input is chosen. It is
important that each rule in the input file specified is followed by a carriage return, as this is the
delimiter Circe recognizes for end of sentence, If the user opts to process rules from'a file, the
program will continue using this method until directed otherwise, although an exception to this
occurs when a rule is not processed to the user's satisfaction. In this case the program prompts
the user to re-enter the rules via the keyboard. The old rule can be retrieved for editing at
this point by the meta-control-y key sequence. Once the user indicates the rule is satisfactory,
Circe goes back to the file to get the next rule.

The intermediate output that can be requested in the initial menu are tracing messages

and the results of the parser. The result of the parse is a very long list containing a list for each
simple statement in the rule, which in turn is a list of all the parts of speech identified in that
simple statement. This is longer than might be expected. Longer still are the tracing messages,
which the user should almost never have the need to see. The tracing messages give a running
account of where the parser has gone in the parse tree, giving the name of every node it tries
and whether or not each test was successful. Unless something appears to be drastically wrong
with the parse, the user should probably set both of these variables to "No."

After the input conditions are set, the main loop of Circe begins. Each loop processes
completely one rule. If the user has opted to type in the rules, he will be prompted at the
beginning of the loop to enter a rule, followed by a carriage return. It is important not to hit
the carriage return before the rule is completely typed in because processing starts immediately
after the carriage return is entered. The user can exit the program at this point by typing the
word "stop," or change the input/output conditions by typing the word 'options." If the rules

'All flename, control-keye and other implementation-speciflc Items are in reference to a Symbolics 3600
workstation

3

•%.Vo

I.:.:::j'.~~ &>...............

are being read fron a file, the user is asked if he wants to process a rule from the file. If he
answers no, he will be asked if he wishes to change the options or stop.

Once Circe has a rule, it calls the method Perform-test of the flavour Sentence.part.,
which does the actual parsing. As each word of the input sentence is encountered and identified,
it is displayed on the screen. If a word cannot be identified, a message is given to the user
telling which word caused the error and one of the parts of speech the word could have been.
It is impossible to tell exactly which part of speech the user meant there to be at that point, I
because usually several different parts of speech may be correct at any given point in a sentence.
(See Appendix A for a definition of the current grammar or Appendix B for its graphical
representation,) Occasionally the program may even get offending word wrong, if the program
happened to back up in the parse to try to correct the mistake. If the user has entered a word
not in Circe's vocabulary, then the appropriate vocabulary list will have to be updated to
include this word, if indeed it should include it. (See Appendix F for the method of updating
the vocabulary.)

If the parse is successful, the program will display the result if the user has requested this,
and will call the translation routine Make-rule. The resulting LISP code will be displayed,
as will the rule translated from LISP back into English. The user should carefully examine
these to be certain that the rule says exactly what he wanted it to say. The program will ask
the user if the rule has been processed correctly; if it has not, Circe will prompt the user to
re-enter the rule. The user must rephrase the part of the rule that was incorrectly interpreted.
Re-entering the same wording will give the same result as the previous parse. This question
does not result in a call to an editing facility; it merely stops the incorrect rule from being
saved. The corrected sentence is treated exactly as if it were a new sentence.

Should the user reply that the rule was correctly processed, the program prompts for an
identifier for the rule. The identifier, the input, and the LISP rule are then put on a list as a
single unit. The main loop is now finished, and Circe again prompts for input. If the current
mode of input is file, and the current file is empty, the user will be informed and asked whether
he wants to change the input conditions or end.

At the end of the session the program requests the name of a file in which to write the
rules. This given, it takes the rules off the list of rules one by one and writes them to the file
specified. (See Appendix E for some sample output rules.) A message is displayed when the
rules have all been written.

4

. . - 1

3 The Parser

The parser was designed to be as modular as possible. Modularity is desirable in almost
any program, because it ensures that a change in one function will not necessitate a change in
every function even remotely related to it. It also means that functions need not be duplicated
if they are required in two different places. Modularity was especially desirable in this project
because the program is an experimental system in a changing environment. If the requirements
of the larger system change it should not be too difficult to change the parser to accommodate
this. Because the parser is separate from the grammar it uses, any grammar could be substituted
for the current one and presumably the system would still function successfully. Similarly, any
one of the tests the parser uses could be substituted by another of the same name without
altering anything else in the system (providing the number of variables passed to it did not
change). (See Appendix F for the methods to change the current grammar and to add a new
parsing test.)

The parser uses the recursive properties of Zetalisp to perform a top-down left-to- right
search. This search is goal-directed; it starts with one goal, and tries to satisfy that before
it moves on to another. Often a goal will have subgoals which must be satisfied, and these
in turn will have their own subgoals. The parse is completc whe." the originaw goal, that of
"statement," has been satisfied.

The grammar and the main parsing function are built on the flavour facility lin Zetalis.
(For more information on flavours, see [101) Each part of speech in the grammar tree is defined
as an instance of the flavour Sentence.parts. Each instance contains a variable "parts," which is
a list of its subgoals, a variable "test," which is a list of tests for these subgoals, and a vwiable
called "significant?" which tells whether or not the node is important enough to include in
the parse results. (See Appendix C for examples of this implementation of parts of speech
in the current grammar.) Each of these flavor-instances is in effect a Backus Naur form rule
(for more information on BNF rules, see [4)). The name of the instance is the non-terminal
variable found on the left-hand side of a BNF rule, and the goals on the parts-list form the list
of terminal and non-terminal variables on the right-hand side of the rule. The parts-list and
the test-list together form the replacement function for the rule.

The parsing function is a method of the flavour Sentence-part. Circe sends a message to
the flavour-instance stint to perform the generic function Perform-test on itself. Perform-
test gets the parts list and the test list from stint, and successively applies each test on the list
to its corresponding part on the parts-list. Generally these tests consist of sending a message
Perform-test to the flavour-instan- e of the part specified, and setting some variables according
to the results. When Perform-test has applied all the tests to the parts list, it returns a result
which indicates whether all of the tests have been satisfied. If they have, then the goal itself has
been satisfied and can be entered on the parse-list. (See Appendix D for a graphical example
of how the parser works.)

5

.. or A.

. ..

-.

_. ,,- ...

The tests the parser uses can be divided into two types, depending on whether they check
for terminal or non-terminal goals. Man, Opt, Exor, Oob, and Double-list all eventually
result in the message Perform-test being sent to a part, as they all test for non-terminal goals.
List?, Spec?, Number?, and Pnoun? check for the existence of a terminal node, so that no -
call to Perform-test is necessary.

All of the first group are, or could have been, built using the one basic function Man.
Man is short for "mandatory"; essentially the function sends a Perform-test to the part
given to it and returns Nil if the test fails. If it succeeds, Man adds an associated pair to the
parse-list containing the name of the successful goal and the number of the simple statement in
which the goal occurred. If the variable significant? of the goal is set to "Nil," the goal name
will be associated with "D" rather than the simple statement number. This will cause the pair
to be deleted later in the processing. If the goal was satisfied by the existence of a word, the jj
goal is consed with the word itself.

The test Opt, short for "optional," could have been written using Man, but was not.
Opt performs basically the same functions as Man, but its results are treated differently by
the Perform-test that called it. This routine is tolerant of failures in an Opt test, whereas
a failure of a Man test signals the failure of the goal. Opt also differs from Man in that it
saves the values of the pointers that tell where the parser currently is in the input sentence. If
the subgoals of an Opt test fail, the position before the initiation of the test can be restored.

The other functions in the first group - Exor, Oob and Double-list - are all based on
the Man test. Exor performs an exclusive-or test on the list of two parts that is supplied to
it. It checks for the first part using Man and if successful, it returns without checking for the
second. If the first test fails the second part is checked for and if this is unsuccessful "Nil" is
returned for the Exor test. Oob is also supplied a list of two parts. It checks for the existence
of one or both of the two parts, in the order they are supplied. Double-list applies the test
Man successively to a list of items, returning after the first successful test. If all of the lists
fail, the test returns "nil."

The second group of tests - List?, Spec?, Number?, and Pnoun? - all check for the
existance of a certain type of word. List? will compare the word in the input string currently
being examined against each word in a list of words. For example, if the word being identified
was "vessel" and the current goal was a noun, List? would have been given N-list as its input
variable. List? would have compared "vessel" to each word in N-list in an attempt to verify if
"vessel" was actually a noun.

Spec? checks for a specific word. At different places in the grammar tree certain words
must occur, such as "if" at the beginning of a rule. Spec? checks if the word being identified
is the same as the word passed to it. Number? merely checks whether or not the word being
examined is a number (expressed in digits). It has no variables passed to it.

The test Pnoun" is not as simple as the other tests in this group. Pnoun? decides if the
word under consideration is a possesive noun. To do this it checks the list of nouns. Before it
can do this, however, it must remove the trailing apostrophe-s from the word. Since the words
have been converted to symbols to make processing easier, this is impossible. To remedy the ." -

situation, the routine that extracts the words from the input string saves any word with an

6

W...,......-.................
~~~~..-....... ...-.-.-. .-........-..-.. ..-.. .....-. ..... : .- . ,, ,--....,,- ., :,-,,



- . -7I.- - - - - - - - - - --.. - 1-.

[..- .'- "!

4%

apostrophe in a global string variable called Pword. To check for a possesive noun then, the
routine first checks the variable Pword. If it is empty, there is obviously no possesive noun. If it
is not empty, Pnoun? strips off the apostrophe-s, converts the string to a symbol and checks
the noun list for its existence. This routine could be made more general purpose by allowing
the calling function to specify which word list should be checked. In this way the grammar
could conceivably be expanded to handle possessive pronouns and contractions.

All the routines that check for specific words get the next word if the routine successfully
identifies the current one. This is done by calling the function Gettoken, which extracts the
words from the input string using pointers. Gettoken sets a pointer to the first nonblank
character to mark the start of a word, and a pointer to the next blank after that to mark the
end. The pointers leapfrog over each other; each using the other as the starting position for
its search. When the two pointers are set the string delimited by them is extracted. Periods
are trimmed off the ends of the word and a search is made for apostrophes. If one is found,
the string is placed in the global variable pword, and the apostrophe is converted to a number
sign. After this the routine checks if the string is a number expressed in digits, in which case
it is left as is. Otherwise, the program converts the string into a symbol and places it in the
global variable Word.

The final output of the parser is a list detailing the results of the search through the
grammar tree. The words "if", "premise", "then", and "action" are all on a separate list inside
the parse list, as are the elements of each simple statement. Each simple statement list contains
a cons for every part of speech that was identified in the statement, in the order in which they
occurred. This parse-list still contains all the conses-marked with a D; they are eliminated later
by the translator.

The output of the parser was originally a hierarchical list that showed more definitely
the relationships of the parts within the sentence. Each node was inside a list of each of its
ancestors, and nodes with the same ancestor were inside the same list. While it was easier to
see the interrelationships within the structure, it was harder to process the structure itself. The
simple list structure that was eventually adopted is far easier to work with. The drawback is
that there is greater potential for misinterpreting the information contained in the list.

If at some time it should prove more useful to adopt the hierarchical structure again, it is
a simple matter of changing the commands in Perform-test, Man, and Opt that deal with
values returned from function calls.

7
,.'- '- S5*



4 The Translator

Once the sentence has been broken down into its component parts of speech by the parser, .
the translator must convert this parse into something more useful. The translator must arrange
the parts in the sentence to form a more uniform representation of the knowledge contained in
them. The data structure chosen for this is the familiar object-attribute-value triplet. For this
application these triplets are augmented by a variable at the beginning to indicate the relation
between the attribute and the value, and another variable at the end to indicate the level of
confidence attached to the rule. The confidence level is expressed in whole numbers from -100
to 100, depending on the level of certainty required for the rule to be activated. The job of
the translator is to take the information in the parse and decide which pieces of information fit
where in these pentads.

The input to the translator is the list of lists output by the parser. The first list it ignores;
this contains the word If associated with itself, indicating that the sentence lists that follow
are in the premise clause. The next list will ccntain a simple-statement, and the translator can
begin the process. The processing by the translator takes the form of a large loop, each loop
translating completely one simple statement. For each simple statement the translator will
remove any unnecessary information in the list, classify the statement according to sentence-
type, and then extract the information necessary to form the relation-object-attribute-value-
confidence groups. The first step in this is to remove all the unnecessary associated pairs in
the list. The subroutine Killer does this by identifying all the pairs with "D" as their cdr
and deleting them. The statement is then examined by Classify to determine which type
of sentence it is. Every sentence can be put into one of seven different categories, depending
on such things as the type of verb used and the parts of speech that follow the verb. Each
classification is represented by an instance of the flavour Sentence- Types that contains a list of
the distinguishing characteristics and the type of ending the sentence has.

Having classified the simple statement, the translator begins processing it. The program
branches at this point, depending on whether the statement comes from the premise or the
conclusion. The program assumes it is working on the premise until informed otherwise. It sets
the default conditions for premise, and calls the functions Subject, Predicate, and Ending
to extract the information for the relation-object-attribute-value-confidence group.

Subject finds both the object and the attribute of the sentence or sentence-fragment
supplied to it. The object of the sentence, if there is one, will either appear as a possessive
noun or a noun inside a prepositional phrase. The translator looks for the possessive noun first,
then for a noun before a prepositional phrase (which would be the attribute), and finally for
the noun in the prepositional phrase. For each noun found Subject calls Extract-Adj to find
any adjectives modifying the noun. A new pentad is created for each adjective located, using
IS-SAME as the relation, the noun as the object, the type of adjective as the attribute, the
adjective itself as the value and 100 as the confidence level. The translator is able to classify

8o -.



the adjectives because of the way they are handled by the parser. The adjectives are stored
in the parser's vocabulary different lists depending on what type of information they convey.
Because the different lists are arranged in a tree under the same ancestor "adjective," the parser
creates three conses for each adjective found: one indicating that an adjective exists, the second
giving which type of adjective exists, and the third containing the adjective type again and the
adjective itself. The second cons is deleted by the translator.

Depending on the type of adjective found, the translator may convert the information to a
more uniform representation. If the adjective is a measurement such as '100 feet," the program
will look for "feet" in a conversion table and replace it with "ft'. It then concatenates this
with the number so that the measurement can be treated as a single unit. When the translator
finds a measurement it automatically checks for a quality to go along with it, such as "long"
or "wide." If it finds one it will try to convert it to a noun, such as 'length' or "width," to be
used as the attribute element of a pentad. If there is no quality in the sentence, the translator
tries to find a default quality for the unit used: the default for 'hz" is 'frequency.' If this also
fails, the translator uses the generic "measurement" as the attribute.

Regardless of which adjective is found, it is deleted from the sentence so that it will not
be found again by the program. Any pentads that are created for adjectives are placed on a
global list to be dealt with later. If the main object and attribute are found they are placed
in global variables. These may play an important role in further processing, especially if the
next statement contains pronouns. When pronouns are located in a simple statement they are
given the value of whichever noun would normally be expected in their position. For example,
if a pronoun is found in a prepositional phrase it is given the value of the global variable Mob3 , %.

which contains the object of the last sentence. If at the end of all this the program has not
identified the object or the attribute, the defaults "object" and 'attribute" will be used.

Having decided on the first two variables, the translator calls Predicate to identify a
relation for the group. If the verb of the sentence is an active verb then this becomes the
relation. If the verb is a copula verb the translator checks for adverbs that could be used in
making the function name of a relational operator. For example, if the copula verb 'is' is
followed by the adverb "less-than' the function concatenates these to form the function name
"IS-LESS-THAN.' The program also checks at this point for adverbs that indicate a level of
confidence. These adverbs are converted to numbers (see table 1) and placed in the global
variable Mconf. The default confidence level is always 100 i.e., unless otherwise stated, the
program assumes the input to be completely certain.

If the verb is an active-verb the program checks for other types of adverbs, for example
ones which would indicate speed or direction. It attempts to convert these to their adjective
equivalent, so that "the fast boat" and the boat that "moves quickly" will result in the same
representation.

The final step for sentences in the premise is a call to the function Ending. Ending in
turn sends a message to the instance of the flavour Sentence. Tpes that represents the sentence-
type of the current statement. The message returns the type of ending the translator should
expect to find. The word that fits this description is put into the global variable Meal. The
routine also checks for a numeric confidence level indicator at the end of the sentence; if found,
the number is placed in the global variables Mconf.

%9

"i ,- ~~~~~..... ..... ,".-.".....- .. , .-..-- ,,.--,-.,-.. ,,,....,,..,...-.."- ,



%'L

POSITIVELY 100 I!
VERY - PROBABLY 75
PROBABLY 50

POTENTIALLY 25
POSSIBLY 0
POTENTIALLY - NOT -25
PROBABLY - NOT -50
VERY - PROBABLY - NOT -75
NOT -100

Table 4.1: Confidence Level Conversions

When the translator has values for the five elements of the rule, default or otherwise, it
puts these elements together on a list. It then forms a larger list with an IS-AND relator at
the beginning followed by the list just created and any other lists that may have been created
because of adjectives or adverbs. ADl of these together are a summary of the information
contained in a single simple statement. This list is added to a larger list that is composed of
all the simple-statement lists in the premise.

Simple statements in the conclusion may be handled slightly differently. A declarative
statement is treated the same as a statement in the premise. Subject, Predicate, and Ending
are called and the appropriate global variables are set. If the sentence has a copula verb but
no subject, only the subroutines Predicate and Ending are called, and the program assumes
that the subject of the sentence is the same as the last sentence.

For an imperative sentence the translator calls Subject and Find-Action. The latter
function is used exclusively for action verbs in the conclusion of the rule. Because most sentences
in the conclusion of the rules are concerned with setting a variable to a certain value, the action
verbs that get the most use are "assign," "increase,* and "decrease.' These all have the effect
of changing the value of a variable, rather than setting it. The function IS-SAME, however,
should be able to both set and change values. Rather than using the action verbs as the relator
of the clause, the translator instead converts them into a value. "Increase is changed to
ASSIGN-HIGHER-VALUE and "decrease" to ASSIGN-LOWER-VALUE. If -assi is used,
the translator looks for an adjective that indicates level, such as 'higher" or "lower.' If one
is found the expression translates to the same as "increase" or 'decrease.' If no adjective is
found, the value is set to ASSIGN-VALUE. a

All of the conclusion pentads are strung together in the same way as those of the premise,
and the premise and conclusion are joined to form a single list. This list is returned to the
calling program.

In addition to the function that converts English rule to LISP pentads, there is also a
function that will convert the LISP pentads back into English. Print-Rule forces the different ,
elements of the pentads into an English template. The function makes no attempt to rejoin
the modifiers with the words modified, printing them instead as separate statements. Each
statement is prefixed by a number; statements originating from the same simple statement
have the same whole number prefix.

10

i.'

...-::.- ..-.::-- .."::':'---.:.:.'-...-....... -: '" -- "-:-.,:-:- ''-:-:



5 Possible Improvements

Many improvements to the Circe system are possible. As is the case with any natural
language system the parser could be expanded to allow more varied sentence structures or
parts of speech. It may be useful, for example, to be able to identify possessive pronouns or
compound subjects. To be really useful the parser should have a built-in backup system that
would allow it to try to correct errors it may have made. At present the parser has a very
primitive backup system that allows it to return to the point before it started an optional
branch. A better backup system would allow the program to return to the last position in the
parse where a different decision could have been make and restart the parse from there. For
example, if the parser found itself with an error it might backup to an exclusive-or test where
a check for the first choice had been successful. It could cancel out the part of the tree that
had been created for that choice and restart the parse by trying the second choice.

An interactive error correction mechanism would be another useful addition to the parser.
If the parser choked on a word it could ask the user if the word was indeed the word he wanted.
If it was, the parser could ask the user to specify how he wanted to use the word (which part of
speech, and any other information that might be useful). A spelling corrector would also help
in identifying unknown words, suggesting to the user words that have similar spellings. The
system could be further sophisticated by suggesting only those words that are grammatically
correct in the context. The most vital, useful addition to the parser would be a facility that
allows the user to change the vocabulary interactively during parsing rather than editing the
vocabulary as a separate task and then rerunning Circe on the parse that failed.

The translator could be improved by making it process simple statements. Although the
parser can handle statements as well as rules, the translator is set up exclusively for rules. If
this change were made the translator could be used for entering simple facts into the knowledge
base, or for accepting information from a sonar operator. The program would be more useful
if it were more modular. This could be done by making more use of the flavour facility of
Zetalisp. Perhaps each simple statement given to the translator could be classified according
to the different instances of a flavour and processed according to instructions contained within
the instance. In any case, the more modular the translator is, the better, because modularity
ensures that the program is more general purpose and certainly more flexible.

The system as a whole would be more useful if a rule editing facility were added. The
optimum is a function that would allow the user to edit rules in an existing rule base. At the
very least the user should be able to edit a rule he has just entered without completely retyping
the rule. It would not be too difficult to arrange this, given that the LISP-to-English conversion
function provides numbers that correspond to the position of each statement in the LISP list.
For example, the statement numbered 3.2 in the English print-out is the second element of the
third list in the LISP list. This information could be used to extract and edit the appropriate
list from the LISP expression.

. . 11



W
*R.

6 Design and Implementation
Considerations

Many of the decisions made in the design and implementation of Circe were based on the
performance of Calliope in different areas. Many of the better features of the earlier program
were included in Circe, changed if necessary and improved if possible. Time and limited
resources did not permit this in every cane however. For example, Cadlope was superior to
Circe in its ability to handle vocabulary. Rather than having the grammar itself contain long --
lists of nouns or other words already contained in Intersenao, Calliope used Athena to
consult Lutersensor's knowledge base. This meant that Calliope could understand all the
words contained in Intersensor, with no changes necessary if the vocabulary of Intersensor
expanded or contracted. Calliope was also able to take advantage of Athena's system for
handling synonyms and abbreviations.

As was noted in the introduction, the grammar of Caliope had to be severely limited
in order to translate rules. This meant that only a small subset of very simple rules could
be successfully parsed, ennsuring that the input to the translator was extremely predictable.
Translation in this case was little more than taking key words out of o0e template and inserting
them into another. Because Circe's grammar is comparable to that of the first Calliope,
Circe's translator had to be more complex to be able to handle less predictable input. The
implementation of the grammar was also changed, as a consequence of the Computer Aided.
Detection group of DREA acquiring Symbolics Lisp Workstations. Tme grammar was changed
to take advantage of the flavour facility in Zetalisp, the dialect of LISP that is supported by
Symbolics. Instead of using Athena's units to represent a sod@ in the grammar tree, Circe
uses instances of a flavour. A flavour is basically a user defined data structure. C occirance
of this data structure is called an instance. Both Calliope and Circe wen based on an object-
oriented approach to programming rather than the conventional function-orien ed approach.
This meant that the course of the parse was determined by information contained inside the
data structures, whether units or instances, rather than a clea sequence o actions in a function.

While both programs were object oriented, Circe was writtm with a view towards mod-
ularity. It was decided that a system inside an environment as susceptible to change as Inter-
sensor should be as adaptable as possiHe. To achieve this aim the functions to Circe are as
general and as independant an possible. One of the problems with Calliope is that its tests
were too rigidly defined. If a part of speech had two mandatory components followed by an
optional one, there was a test written to check for that sequence. If the part of speech had
one optional test followed by two mandatory ones, there was another test for that sequence.
For each different combination of parts there was a different test. The parser in Circe only
has tests for individual items; if a part has several components, several tests are called. This
eliminates the need for defining a new test each time a new combination of parts is jeeded: the

12



existing tests are simply specified in a list in whatever order is necessary. .

In keeping with modularity, the grammar is completely separate from the parser. Either
could be replaced and leave the performance of the other unaffected. The vocabulary is also
separate from the grammar, so that different word lists can be used for different applications.

The possibility of using a transformational grammar for Circe, rather than the simple
context-free grammar now in place, was investigated. Some research had been carried out at
DREA in this area [1] , [2] and some software had been written. The deep-structure represen-
tation that results from a transformational parser certainly has its advantages, especially since
one of the goals of Circe was uniform representation of information. A transformational parser ,xz.
will give the same parse for two sentences that contain the same information, not matter how
that information is organized inside the sentence. Despite the obvious benefits, it was decided
that limited scope of input allowable by Circe (rules and simple statements) did not warrant
the extra effort necessary to implement a transformational parser. Since uniform representa-
tion was still desired, some transformations are performed by the translator. Whether the word
destined to be the object of the sentence occurs as a possessive noun or inside a prepositional
phrase does not matter: the translator will understand what is meant and both will be repre-
sented the same way. Some transormations are also performed on active verbs and modifiers
to ensure that the final output of the program is uniform.

The translator was originally intended to be as modular as the parser. A flavour named
Sentence- Type was defined, and instances of this each described a possible sentence structure
according to its identifying characteristics. The problem of translating, however, is not as
amenable to the concept of object-centred programming as is parsing. The translator does
depend for the most part on a few main functions which are relatively general purpose, but
it is impossible to completely separate the functions from the input when the problem is so
dependant on the input. It could be argued that a parser is just as dependant on the input,
but a parser merely tells the user what exists in the sentence, rather than trying to do anything -

with this information. In any case, this particular translator is probably not as modular as it
could be, and any change in the input conditions will necessitate some change, large or small,
in the system.

13

.* - ~ . .. . . - .* . . .. :..

. . . . . . . . . . . . . . .. . . . . . . . . . .



7 Conclusion

Circe, like its predecessor Calliope, attempts to convert English rules into LISP-like data
structures. Both programs were designed as development aids for the Intersensor knowledge
based inference system. Circe performs the conversion of the rules in two major steps: it
breaks the sentence down into its grammatical components and then using these components
it assembles the relevant information into five-element lists. These processes work on one rule
at a time, entered either by the user via the keyboard, or from a file.

The system is by no means complete or comprehensive. A parser does not exist that can
understand every rule input, and this system is not leading the way. In realistic terms, the
most severe limitation of the parser is its lack of a correction mechanism for decisions. The
grammar can not be expanded much further without either a back-up or a look ahead facility.
The translator is not without its problems either. It does not have the ability to translate single
simple statements, and cannot even translate correctly all of the rules the parser can supply. %
This is not to say that the system is without merit; it processes a reasonable variety of rules
quite successfully.

The question could legitimately be raised as to why a natural language understanding
system should be used to solve this problem. No knowledge of the LISP language is needed
to form the output, as the rules are not written in LISP code anyway. The output is merely
a data structure that resembles LISP through its use of lists and parentheses. Presumably a
sonar expert could be taught quite quickly how to organize the information. What then is the
use of this program?

One of the main advantages of using the system is the consistency of representation Circe
affords. If judgements are required as to how the knowledge should best be represented, as
indeed they are, it is best that these judgements be consistent. Unless the same sonar operator
enters every rule for the system, the judgement may not be consistent, and it may not even
be consistant in that instance. The Circe system also ensures that the terminology used is
consistent; any word not in the vocabulary is not understood. The same holds true for the
function names: Circe acts as a filter for unwanted input. Another advantage of Circe is that
it tries to store somehow every piece of information entered. Every modifier is represented
in the final output. The system also gives the user a chance to see his rule rephrased in a
way that shows exactly what the rule means (assuming the rule is processed correctly). Even
without the improvements suggested in the previous chapter, Circe will be a useful addition
to Intersensor.

14

. . %

................................... '. ... .. . .. . . .. . .



Bibliography

[1] Bonner, Anthony J. A System for Parsing Natural Language Sentences Using a Chem-

sky Transformational Grammar, DREA Research Note DREA/SP/79/4, November 1979.

K "Informal Communication."

[2] Bonner, Anthony J. Software Support for Transformational Parsers. DREA Research Note

DREA/SP/82/2, February, 1982. "Informal Communication."

[31 Buchanan, Bruce G., and Edward H. Shortliffe, Rude-based Expert Systems, Reading, Mas-

sachusetts: Addison-Wesley, 1984.

[4] Chornaky, Noarn, Syntactic Structures, The Hague: Mouton, 1957.

[5] Dent, C. Ann, and Reid G. Smith A Guide to Athena: A Knowledge Representation
Language, DREA Technical Memorandum 83/6, Defence Research Establishment Atlantic,

Dartmouth, Nova Scotia, October 1983.

[61 Dent, C. Ann, Reflections upon Building a Sonar Expert System, DREA Research Note

DREA/SP/85/2, January 1985. 'Informal Communication."

(71 Muise, J. L., Calliope: A Natural Language Rule Interpreter, DREA Research Note DREA/SP/84/2,
April 1984. 'Informal Communication."

[8] Muise, J. L., Calliope 11: The Seluel, DREA Research Note DREA/SP/85/3, May 1985.

"Informal Communication."

19] Rodger, R. M., A Lisp Parser for Context-Free Grammars, DREA Research Note DREA/SP/79/1,
June 1979. "Informal Communication."

[10] Reference Guide to Symbolics-Lisp, Cambridge, Massachusetts: Symbolics, Inc., 1985.

1111 Shaw, Harry, Handbook of English, Toronto: McGraw-Hill Ryerson, 1979.

[121 Thomas, Owen, and Eugene R. Kintgen Transformational Grammar and the Teacher of

English. New York: Holt, Reinhart and Winston, 1974.

15

%S



Appendix A The Grammar Expressed as
BNF Rules

Stmnt ~ Rule Simple - Stmnt)
Simple - Stint ~ /Declarative Imperative)
Rule { & IF) Premise (THEN) Action)
Declarative (& Subject Predicate (Confidence - Phrase))

I Imperative (Predicate)
Premise =~(Cmpd - Stmnt)
Action (Cmpd - Stmnt)
Confidence - Phrase=*- (& ( WITH) Confidence Clevel)
Cmpd - Stint ~ &Simple - Stint (Add( - Stint))
Addi - Stmnt = (&Conj Cmpd - Stmnt)

Subject (Noun -List)

Predicate ~ /Active - Pred Inactive - Pred)
Noun - List ~ &Noun - Phrase (Add( - Noun - List))
Noun - Phrase ~ &Substantive (Prep - Phroase))
Addi - Noun - List (& Conj Noun - List)
Substantive (& (Article) Modified - Noun)
Article (article)
Modified - Noun ~ &(Adj - List) (INoun Pronoun))
Adj - List =*(& Adj - Phrase (Adj - List))
Adi - Phrase ~ /Pose - Noun Adjective)
Poe. - Noun (noun +' 5)
Adjective (adjetive)
Noun (noun)
Pronoun =~(pronoun)

P rep - Phrase (& Preposition Substantive)
Preposition (prepoisition)

16



Appendix A

Active - Pred ~ &Active - Verb - Phrase (Objects))
Inactive - Pred (& Copula - Verb (Copula - Adverb) (Confidence - Level) Completion
Active - Verb - Phrase=* ( Active - Verb (Adverb - Phrase))
Objects ( (Direct - Object) (Indirect - Object))
Active - Verb (active - verb)
Adverb - Phrase (& Adverb (Adverb - Phrase))
Adverb (adverb)
Direct - Object (& Noun - Phrase (Complement))
Complement (Adj - Complement Noun - Complement)
Adj - Complement (Adj - Phrase)
Noun - Complement (Substantive)
Indirect - Object (& Preposition Noun -Phrase (Direct - Object))
Copula - Verb (copula - verb)
Copula - Adverb (copula - adverb)
Conf idence - Level (confidence - level - adverb)
Completion ~ /Pred - Adj Pred - Noun)
Pred - Adj (Adj - List)

Pred - Noun (Objects)

'7



Appendix B The Grammar Displayed as a
Tree

STMT

RULE -=-

IF PREMISE THEN ACTION

CP- CMPD-
STMT STMT

SIMP'LE- AOOL-
STMT STMT

CONJ CMPD-STMT

EX -OR

DECLARATIVE IMPERATIVE

SUBJECT PREDICATE CONFIDENCE
PHRASE

IF
WITH CONFIDENCE CLEVEL

CONFIDENCE
SYNONYMS

A solid line indicates that the node
is mandatory, while a broken one means
the part is optional.

18



Appendix B

SUBJECT -.I '
NOUN-
LIST

EX-OR ADDL-NOUN-L IST

NOUN- PRONOUN CONJ NOUN-
PHRASE LIST

SUBSTANTIVE PREP-
PHRASE

ARTICLE MODIFIED- PREPOSITION SUBSTANTIVE
NOUN -- ,

ADJECTIVE NOUN
LIST

ADJ ADJECTIVE C
PHRASE LIST

EX-OR

POSS- ADJECT IVE
NOUN I

ONE-OF

SPEED SIZE COLOUR LOCATION PATTERN DIRECTION QUALITY ORDINALITY

MODE ALIGNMENT CLASS STABILITY INTENSITY POWER-SOURCE MEASURE TYPE

NUMBER UNIT

IFI

19~ -
. .. °

. . . . . . ... . . . . . .



Appendix B

PREDICATE

EX-OR

ACTIVE- INACTIVE-
PRED PRED

r- T_

ACTIVE- OBJECTS COPULA COPULA CONFIDENCE COMPLETION
VERB- I VERB ADVERB LEVELI
PHRASE EX-OR EX-OR

I I "r'"

ACTIVE ADVERB DIRECT- INDIRECT- VRED PRED
VERB PHRASE INDIRECT DIRECT AD, NOUN

A7TADIVE- OBJECTS
ADVERB ADVERB DIRECT INDIRECT INDIRECT- DIRECT- LIST

PHRASE OBJECT OBJECT OBJECT OBJECT
ONE-OF I' I

PREPOSITION NOUN
DIRECTION COPULA PHRASE

ADVERB

SPEED NOISE
LEVEL

NOUN COMPLEMENT
LIST -

EX-OR

AD NOUN
COMPLEMENT COMLEMENTI I

ADJ- SUBSTANTIVE
PHRASE

20

.s*.~.*-- . . -
--.-.- - . . . . . . . . . . . .- 2*



App endix C Examples of the Grammar
Implemented in Circe

(defflavor sentence-parts (test parts significant?) D)
* etaoI - instance-variables

.nitacle-instance-variables
* settable-instance-variables)

(defvar stint nil)

(setq stmt (make-,instance 'sentence-parts :test '(exor)

:parts '((rule simple-stnt)

(defvar rule nil) g'i)

(setq rule (make-instance 'sentence-parts :test ' (man man man man)
:parts ' (if premise then act',on)
:significant? nil))

(defvar simple-stnt nil)

(setq simple-stnt (make-instance 'sentence-parts :test '(exor)
:parts '((declarative imperative))
:significant? M)

(defvar declarative nil)

(setq declarative (make-instance 'sentence-parts
test ' (man man opt)

:parts ' (subject predicate confidence-phrase)
significant? M)

(defvar imperative nil)

(setq imperative (make-instance 'sentence-parts :test '(man)
:parts ' (predicate
:significant?T)

(defvar confidence-phrase nil)

(setq confidence-phrase (make-instance 'sentence-parts
:test '(opt man man) P
:parts '(with confidence clevel)
:significant? tl)

21

"I .'

* " . . . . . . . . . . . . . .* .

'" -*



Appendix D An Example of How the
Parser Works

PvERFORM-TEST (ACTIVE-VERB-PHRASE)

.ests: MAN OPT
parts: ACTIVE-VERB ADVERB-PHRASE

MAN (ACTIVE-VERB) OPT (ADVERB-PHRASE)m<// p
PERFORI4-TEST (ACTIVE-VERB) PERFORM-TEST (ADVERB-PHRASE)

tests: LIST7  tests: MAN OPT

parts: ACTIVE-VERB-LIST parts: ADVERB ADVERB-PHRASE

%%

-°..'°

- LIST? (ACTIVE-VERB-LIST) MAN (ADVERB) OPT (ADVERB-PHRASE)

PERFORM-TEST (ADVERB) PERFORM-TEST (ADVERB-PHRAS-)

tests: DOUBLE-LIST tests: MAN OPT

parts: (SPEED NISE-LEVEL parts: ADVERB ADVERB-PH'S E
DIRECTION COPULA-ADVERB) /

MAN (ADVERB) etc.
DOUBLE-LIST (SPEED NOISE-LEVEL N

DIRECTION COPJLA-DVERB) etc.

MA.., (SPEED) PAN (NOISE-LEVEL)

PERFORM-TEST (SPEED) etc.
tests: LIST'
parts: SP;ED

L:S T " (SPEED)

The arrows indicate either calls to or returns from fun.ctions or, In
the case of Perform-test, a message being sent to an Instance.

22

°..



7. 7. 7. 7. 7. 7.

='"

Appendix E Sample Output

;;; The fol7owinC are rules that were generated by Circe and written into a fl~e
;;; The rules have tmree narts to them: a rule nax.e, the original Engl sh Input,
;;; and the 71sp rule generated by the translator. j
(TEST-RULE 1
IF LCFAR-FEATURE IS VEAK WITH CONFIDENCE-LEVEL 80
THEN IT IS FROM A DISTANT TARGET.
((IS-AD (IS-AND (IS-SAME LOFAR-FEATURE INTENSITY WEAK 80)))
(IS-AND (CONCLUDE (IS-SAME LOFAR-FEATURE ATTRIBUTE TARGET 100)

(IS-SAME TARGET QUALITY DISTA!%T 100N))))

(TEST-RULE2
IF THE FREQUENCY-SPECTRUM OF THE SECOND HARMONIC-SET IS WIDE
THEN INCREASE THE SMALLcST INTERVAL OF THE LOFAR-DISPLAY
((IS-AND (IS-AND (IS-SAME 1A.MONIC-SET FREQUENCY-SPECTRUM WIDE 100)

(IS-SAME HARMONIC-SET ORDINALITY SECOND 100)))
(IS-AND (CONCLUDE (IS-SAME LCFAR-DISPLAY INTERVAL ASSIGN-HIGHER-VALUE 100)

(IS-SAME INTERVAL SIZE SMALLEST 100)))))

(TEST-RULE3
IF THE PROPELLER'S BLADE ROTATES CUIETLY
THEN DETECTION OF CAVITATION IS VERY-PROBABLY SMALL
((IS-AND (IS-AND (ROTATES PROPELLER BLADE QUIETLY 100)))
(IS-AND (CONCLUDE (IS-SAJE CAVITATION DETECTION SMALL 75)))))mL-.

(TEST-RULE4
IF MANY TARGET COMPETE FOR IDENTIFICATION
THEN ASSIGN THE HIGHEST P~RITMY TO THE FA.STEST TARGET.

*((IS-AND (IS-AND (CC~4?-ETE TARGET ATTRIBUTE ID0ENTIFICATION 100)
(IS-SAMNE TARGET CARDINALITY, MANY 100)))

(IS-AUD (CONCLUDE (IS-SAME TA.GET PRICRITY ASSIGN,-VALUE 100)
(IS-Spy_ PRICR.TY CUALITY HI'::EST 100)
(IS-SAME TAROET SEED FASTEST 100)))))

;;; The results of test-rule4 may seem a bit confuzIng. If you ex=nfne the
;;; 71t closely, h.vever, yo, will find that the. rule does Indeed ref7ect the
;;; inforr.aton In the eng~lsh Input

23

• .. '..- ........ . ,..-....... .. ,...... .... •.'..... .. --....-.-

... ... .. ... .. ..... ... .. ...--. ......'"i -"-"--.. .. .. ... .. . .. : " '-' : :. . .. ... I" iil| "" -"



[ -

Appendix E

(TEST-RULE5
IF PLATFORM HAS A STABLE AUXILIARY AND HAS A SINGING PROPELLER
THEN IT IS VERY-PROBABLY A SMJALL-FISHING-TRAWLER VESSEL

((IS-AND (IS-AND (HAS PLATFOR M ATTRIBUTE AUXILIARY 100)
(IS-SAN ,E AUXILIARY STABILITY STABLE 100))

(IS-AND (HA-S ATTRIBUTE ATTRIBUTE PROPELLER 100) 7]
(IS-SA.-4E PROPELLER TYPE SIblING 100)))

(IS-AND (CONCLUDE (IS-SAl-Z PLATFORM ATTRIBUTE \SSEL 75)
(IS-SAS VESSEL CLASS SMALL-FISHING-TRAWLER 100)))))

;; The results or test-rule5 ere confusing and perhaps no, what wcz meant
;;; y the english input. The confusion rezults from the ;m7al &.unt of rlnor=t.:on

i;; pnut. The translator has a hard time filling the gaps in Information, and as
a;; a result the second sta:eent :. the p.-emise clause is no: represented Well.

(TEST-RULES
IF A LOFAR-DISPLAY HAS A FIGURE-EIGHT PATTERN

UNDER INTERFERENCE-PATTERN
THEN THE SOURCE OF IT IS THE SMALL RED OBJECT

BESIDE THE LARGE-COKCSRCIAL-SURFACE VESSEL.
((IS-AND (IS-AND (HAS LOFAR-DISPLAY ATTRIBUTE PATTERN 100) (4

(IS-SAME PATTERN PATTERN FIGURE-EIGHT 100)))
(IS-AND (CONCLUDE (IS-SA. TARGET SOURCE OBJECT 100)

(IS-SA.M OBJECT SIZE SMALL 100) L-
(IS-SAmE OBJECT COLOUR RED 100)))))

* ,;;Test-rule Is the opoosite of test-M4l5. Here too mluch Iiformation
;;; was supplied in each simDle statement. If the user had supplied the ruTe:
;;; 'If the Tofar-dlsDay has a fhgure-elght pattern and the pattern 1s under

;;; interference-pattern then the source of it is the smell red object and the
;; object is beside the 7argq-conmvrcial-surface vessel.' the translator would

;;; had performed better. Admittedly this is a bit stlted and may not seem
;;; to say the same thing, but it does produce the desired results.

(TEST-RULE7
IF THE FIRST TARGET'S DIESEL ENGINE IS GREATER-THAN 5 TONS
A1,D THE 100 FOOT LONG SHAFT OF IT IS VERY-PROBABLY TWIN-SHAFTEDTWE1N TRE TARGET IS A NElraPL SURFACE-VES. EL W'ITH MW'IDENCE 60 .f

AND DECREASE THE PRIORITY OF THE US-NAVAL-SURFACE HYPOTHESIS.
((IS-AND (IS-AND (IS-GREATER-THAN TARGET ENGINE STONS 100)

(IS-SAkv TARGET ORDINALITY FIRST 100)
(IS-SA,4E ENGINE POdER-SOURCE DI:-SEL 100))

(IS-AND (IS-SAHE TARGET SHAF T TWIN-SHArFTED 75)
(IS-SA.' SHAFT LENGTH 100FT 100)))

(IS-AND (CONCLUDE (IS-SAE TARGET ATTRIBUTE SURFACE-VESSEL 60)
(IS-SAMZ SURFACE-VESSEL ALIG*--NT NrEUTAL 100))

(CONCLUDE (IS-SA~kC HYPOTHESIS PRIORITY ASSIGN-LCWVER-VALUE 100)
(IS-SAE HYPOTHESIS CLASS US-NAVAL-SURFACE 100)))))

24

I



Appendix F How to make Changes to the
System

F.1 Grammar Changes

Changing the grammar of the program is a simple matter, much the same as adding or

deleting a node from a linked list. To add a new node to the grammar tree, the name and a test
to be used for it must be inserted into the node directly above it. This is achieved by adding
the name of the new node to its ancestors's part-list, and adding the test to the corresponding
position in the test-list. After this the new node can be defined by making it an instance of the
flavour Sentence-parts. At the same time the component parts of the node and their associated
testscan be specified, along with another variable, Significant?. This logical variable specifies
whether the node-name should be placed in the parse-list if the node is found.

Suppose, for example, you wanted to change the grammar so that a confidence phrase
could be used in an imperative simple-statement. All that would be necessary here is an
addition to the initialization commmand that creates the instance IMPERATIVE. Opt would J
be placed at the end of the test list, and CONFIDENCE-PHRASE at the end of the parts list.
If you wanted to create a different type of confidence phrase, perhaps allowing a relator such as -
*greater-than," you would follow the same procedure, adding the name of the new confidence
phrase to the parts list of IMPERATIVE. After that you would have to make a new instance of
Sentence-parts using the name of the new confidence phrase. The commands necessary would
look something like this (depending on which parts and which test were desired):

(defvar NEW-CONFIDENCE-PHRASE nil)

(setq NEW-CONFIDENCE-PHRASE (make-instance 'SENTENCE-PART-S
:test '(OPT MAN OPT MAN)
:parts '(WITH CONFIDENCE-SYNONYMS RELATOR CLEVEL)
:significant? T))

The user must be careful when specifying certain tests. Exor, OOB (one-or-both), and
Double-List all take more than one part. The parts associated with these then must be
enclosed in parentheses, inside the parts list.

If the new node is to be inserted between an ancestor and its descendant, the name of the
descendant should be put on the parts list of the new node, and its test on the test list.

To delete a node from a tree it is a simple matter of removing its name from the parts list
of its ancestor, and the test from the test list. Again, if the node to be deleted has descendants,
and the user wishes to keep them in the grammar tree, their names and tests should be inserted

25

YI



Appendix F

into the ancestor node.

F.2 Adding New Tests

If the user finds that he needs a new test for a certain node, he need only define the
function and insert its name into the test-list where the node is called. The program will be
clearer and less cluttered if the user defines his function using existing tests. Both Exor and
OOB, for example, were written by combining the basic functions man and Opt using different
conditions. With a basic understanding of how the program works and a bit of imagination
the user should be able to write almost any test using only the existing ones. If the user writes
a function that checks for a terminal node, the function should include a call to the function
Gettoken to get a new word. The function should also set the variable wordf which will
ensure that the word itself, not just the type of the word, is added to the parse list.

F.3 Adding to the Vocabulary

Adding to the vocabulary is an easy if inconvenient job. New words are simply inserted
into the appropriate list at the beginning of the file containing the parser. Note that adding
the word "fill" to the noun list does not mean that the program will understaad "fill" if it is
used as a verb. If the word being added to the vocabulary normally contains a single slash, the
word should be input with a double one.

26



Appendix G A Listing of the Parser's
Functions

p, er form-test is the drivilng routine of the parser. It gets from the sentence component
,;that Called it the different parts that ust be present for that sentence component to exist.

* *,;It tests for the presence of these by calling the test specified for each or the component parts.

(defmethod (sentence-parts :perform-test)()-
(Prog (teSt-list parts-list Ind-test Ind-part .

Success result-li3t answer
(setq test-list test)
(setq parts-list parts)
(setq result-list )
(setq answer )
loop
(seta ind-test (car t0st-list))
(setq ind-part (car parts-list))
(setq test-list (cdr test-list))
(setq parts-list (cdr parts-list))
(cond

((setq SUCCess (funcall mnd-test mnd-part))
(cond

((eq mnd-part 'simple-stat)
(Setq stmtnum (addi stmtnum))
(Setq 3UCCess (list success))))

(cond
(result-list

(setq result-list (append result-list succss)))
(T (setq result-list Success)))) %.

((equal mnd-test 'Opt)
(Setq SUCCess TM)

(cond ((not success)
(return nil))

((null test-list)
(cond

(answer
(setq answer (append result-list answer))

(T (setQ answer result-list)))
(return answer))
(T (go loop)))))

27



Appendix G

Man tests for the existence Of one sentence-part by calling perform-teSt. If the
pert 4X~S It returns th part; If not, It returns M7 as the. PatI MV~*y

(defun man (part)
(prog (result signif)

(cond
((setq result (send (eval part) ':perform-teSt))
(cond (word?

(setq result (list (cons part result)))
(setq word? nil))
((setq signif (send (eval part) ':significant?))
(setq result (append (list (cons part stmtnuu)) reslt)))

(T N.
(setq result (append (list (Cons part 'd)) result))))

(setq error nil)
(and trc2 (format T 13s -a8- part))
(return result))

(T
(cond

(part-error)
(T
(setq part-error part)))

(and trc2 (format T I no -a -Vpart )
(return nil)))

Opt checks for the existence of an cotton&? sentence-oort. itdoes this by calliftg
* ,,,perform-test for the sentence-part it was supplied.

* (defun Opt (part)
* (prog (result signif tem-start temp-end temp-word)

(setq temp-start start-word)
(setq temp-end end-word)
(setq temp-word word)
(cond

((setq result (send (oval part) ':perform-test))
(cond (word?

(3etq result (list (cons part result)))
(setq worad? nil))

((setQ signif (send (eval part) ':significant?))
(setq result (append (list (cons part stmtnum)) result)))

(T
(Setq result (append (list (cons part 'd)) result))))

(setq error nil)
(and trc2 (format T forms an opt -a -%*part))
(return result))

(T (end trc2 (format T no opt -a -~part))

(setq error nil)
(setq start-word temp-start)
(setq end-word temp-end)
(setq word temp-word)
(return nil)))

* ,.,Exor Is supplied two sentance-oarts, only one of which should exist. rho first sentence-part
Is checked, and If It Is found to exist, the search stops. If it does hot exist the second pert

,,Is chocked for. If this does not exist either the error flag is set.

* (defun exor (part)
* (prog (result)

(cond
((setq result (man (car part))
(return result))
((setq result (man (cadr part))
(return result))
(T (return nil))')))

28



Appendix G

;; ob is given two sentence-parts, one or both Of Which can exist, but Only in the order Supplied.

(defun oob (part)
(prog (result result?)

(cond
(Csetq result (man (car part)))

4. ~~~~(cond (a cd at)
((setq result2 (mn(.d pr))
(return (list result result?))) % -.
(T (return result))))

((setq result (man (cadr part)))
(return result))
(T (return nil)))

;;Double-list checks & list of parts to find the first occurance of one of the Parts.

(defun double-list (list)
(Prog (signif $list result)

loop
(Setq Slist (Car list))
(setq list (cdr list))
(cond
((setq result (man sliSt))
(cond

((setq signif (send (oval slist) ':significant?))
(sotq result (append (list (Cons sliSt statnum)) result)))
(T
(setq result (append (list (Cons Slist *d)) result))))

(return result))
(T
(cond

(list
(go loop))
(T
(return nil)))))))

;;List? checks whether the word currently being examined Is on the word-list It has been supplied.

(defun list? (wordlist)
(preg (twop-word)

(cond
((null word) nil)
(T (cond

((,m word (oval wordlist))
(format T 0-a 0word)
(setq temp-word word)
(setq word (gettoken))
(setq word? T)
(return temp-word))
(T (setq error word)

(return nll)))))))

;;Spec? tests the word currently being Processes against a specific word supplied to It.

(defun spec? (wordl)
(prog 0)

(cond
((null word) nil)

(T (cond
% ~((equal word wordi)%

(format T 0 -a 0 word)
(setq word (gettoken)) 4

(setq word? T)
(return wordi))
(T (setq error word)

(return nil))))

29

...................................



6 Appendix G

;;;Nmbe? SI07Ychecks whether or not the word currently being eaie sanm'
(defun nuaoer? WAest ignore)

(prog (number)
(cord

((niterp word)
(format T ' -d Iword)
(setq number word)
(Setq word (gettoken))
(seWq word? T)
(return number))

(return nil)))

m, Pain is the routine which controls the processing of the Santaee. It prompts the user
r, or the sentence to be parsed end then calls perform-test. If the sentence Is successfuly

aparsed, the parse tree is output olong with other Information end the user Is prompted5 .,.to enter another sentence.

(defun CIRCE (0
(prog (*of no-comas temp stopflg Irule rule-name sentdescr temp-uwe-In)

(Seta stopf 19 nil)
(setq session-list nil)
(SetO tem-user-in nil)
(Setq *of nil)
(seWQ user-in T)%6
(setW loaded-file nil)

(choose-user-options *choose-variables-li1sts' *:function Ireadlt)

;;; setq trtl (y-or-n-p *Do you want to see the results of the parse? )S ;;; (setq trc2 (y-or-n-p ' Tracing messages? )
(loop whiile (not stopflg) do

(props
(cond

((or user-in temp-user-in)
(setq tem-user-in nil)
(seta paragraph (string-upease (with-input-editing-options

((:input-hi story-default sentdeser))
(proirpt-and-read :string

*Enter the rules in complete sentences. To stop. type the word STOP. To
change user-options type OPTIONS.

* UM))

(T
(cond

((y-or-n-p *Process rule from file? ')r (setq paragraph (car Input-list))
(setq input-list (cdr input-list))
(cond

((equal 00 paragraph)
(SetQ stoP? lg T)
(format t "-% The current file is empty.')
(COffO
((-OR-N-P IQuit (Y) or change options (n)? 0)

(SETO PARAGRAPH ESTOP"))
(t
(setq paragraph *OPTIONS"))))))

CT
(cond

((y-or-n-p *Quit (y) or change owtun3 (n)?)

r (setq paragraph 'STOP*))
(T
(setq paragraph *OPTIONS")))))

3 0

itS
. . . . . . . .%



Appendix G

(setq sentdescr (string paragraph))
(cond

((equal (string-right-trim '(#\~.) paragraph) 'options')
(choose-user-options schoos0-variables-l113t* ':function Ireadit))I ((not (equal (string-right-trim '(\)paragraph) 'STOP'))
(setq no-commas nIl1) 0(setq start-word 0) .
(setq end-word 0)
(setq 3tatnum 1)
(setq cos nil)

(loop while (not no-comas) do ; This loop turns a77 commas Into b7&nks
(Progn
(setq teag (string-search-Char <CM4A> paragraph))
(cond

((null teMp) (setq no-COMas T))
(T (aset (BLANK> paragraph tamp)))))

(setq error nil)
(setq word (gettoken))
(setq fanswer (send stat ':perform-test))
(cend

(error (format T '-% Error: Looking for a -a but found -a instead -
part-error error)

(setq paragraph )
((not 003)
(format T 8ERROR: Finished before end Of Sentence."))
(T
(cand

(trcl
(grind-top-level fanswer)))

(setq Irule (make-rule fanswer))
(grind-top-level irule)
(print-rule irule)
(cand

((y-or-n-p o Is this what you meant? '
(setq rule-name (prompt-and-read '*expression *Enter a name for the rule')
(setq irule (list rule-name sentdeser irule))
(setq session-list (append session-list (list lrule))))
(T
(format Tf

6-% Re-enter the rule, rephrasing the incorrectly parsed portion')
(setq temp-user-in t))))))

(T
(setq stopflg T)))))

(write-to-file Session-list)
(return T)))

-~ ;;Gettoken extracts the next word from the sentence Input by the user. It changes
,;the word into uppercase letters and converts It from a character string to an atom
,;to maeke it eas~er to process. Any blanks or punctuation marks are stripped F'rom
,.the word, end apostrophes are converted to numb~er Signs ON).

(defun gettoken (0

(prog (word teMP length location)
(Cond

(Los (return nil))
((not (null end-word)) sac-tchrMN prgah1-atq start-word (string-erhntca (BAKpagahen-i,)

(-weta end-word (string-search-char (BLANK) paragraph start-word))
(setq word (substring paragraph start-word end-word))Ir

3'

I%
................



Appendix G

3eqword (string-right-trim (.)word))

((setq location (string-search-char (APOS> word)) ;;doesn't handle more than one -fix

(aset 0\0 word location)
(setq pword word)))p (cond

((multiple-value (teow length) (parse-number word 0))
(cond
((equal length (string-length word))
(return temp)))))

(return (intern word)))
(T (setq 003 T)

(return nil)))))
(defun pnoun? (word-list)

*(prog (wordi)
(ignore ward-list) ) atop check iwrdls? supplied by ca7lng routine...
(cond

(pword
(setQ wordi (intern (string-right-trim OES6 pword))) -

(cond
((memq wordi n-list)
(format T 0 -a 0word)
(setq word (gettoken))
(setq word? T)
(setq pword nil)
(return wordi))

I (setq error word)
(return nil))))

(T
(setq error word)
(return nil)))

(defun write-to-Vile (lispex)
(Prog (file

(cond I
(ses3ion-list

(setq file (prompt-and-read '(:pathname :default *bl:>JIM>rules.lisp8)
-Enter a file name to write to (default 13 -a) -

mbl :>JIm>rules.lisp"))

(with-open-file (str file
:direction ':outputI ':charaCters t
':if-eXists ':append
iOf-does-not-exist ':create)

(dolist (element lispex)
(send str :string-out (format nil "-am element))))

(fra T 1% Rules written to -Am file))

(format t m-% No rules to write')))))

(deful readit (window variable old-value new-value)
(prog (paragraph end?)

(ignpre window old-value now-value)
(cond

F ((OR (eq variable 'user-in) (EQ VARIABLE TILE))
(cond

* ((eq file loaded-file))

(setq Input-list nil)
(with-open-file (str file

:direction ':input
:Characters t)

(loop while (not end?) do
(multiple-value (paragraph end?) (send str ':1mg-in))
(setq input-list (append input-list (list paragraph)))))

(setq loadeo-file file)))))
(return nil))

32



Appendix H A Listing of the Translator
>>> describes the different sentence-structure types.

(defflavor sentence-types (parts ending)
0)

:gettable-lnstance-varlables
s3ettable- instance-variables
Onitable- Instance-variables)

(defvar 31 nil)

(setq 31 (make-instance 'sentence-types :parts *(subject active-verb) :ending ')
;;example 'Fish swim.0

* - (defvar 32 nil)

(setq s2 (make-instance 'sentence-types :parts '(subject active-verb direct-object)
:ending '((direct-object .noun))))

;;example 'Jim writes programs.'

C (defvar 33 nil)

(setq 33 (make-instance 'sentence-types
:Parts '(subject active-verb indirect-object direct-object)
:ending '((IN . noun))))
;; x&WPle: Oft gave her presents.'

(defvar 34 nil)

(setq s4 (make-instance 'sentence-type3 :parts '(subject copula-verb prod-noun)
:ending '((pred-noun .,noun))))

;;examole: *They are alens.l

(defvar s5 nil)

(setq 35 (make-instance 'sentence-types :parts '(subject copula-verb pred-adj)
:ending '((pred-acj .adjective))))

;;example: Oshe Is ugly.'

(defvar s6 nil)

(setq s6 (make-instance 'sentence-types
:parts '(subject active-verb direct-object noun-complement)
:ending '((direct-object .noun) (noun-complement .noun))))
;;example: OZ called him a foo7.0

(defvar 37 nil)

(setq s7 (make-instance 'senteceC-tYPes
:parts '(subject predicate direct-obj adj-conplement)
:ending '((direct-obj . noun) (adj-coWlement .adjective))))

;;example: 'Ann painted the bicycle purple.'

(defvar action-convert nil)

(setq action-convert '((assign . 8ssigM) (increase . asign-higher)
(decrease .assign-lover)))

33



. . . . . . . ..*- * _ .- + . . ~ . . . . . . ,

Appendix H

(setq direction-check '((northerly north) (northern north) (southerly south)
(southern south) (easterly east) (eastern . east)
(westerly west) (western . west)))

(defvar quality-check nil)

(setq quality-check '((long . length) (away. distance) (distant . distance) (high .height) "
(tall height) (deep depth) (wide width)))

(defvar predicate-check nil)

(setq predicate-check '((greater-than-or-equal-to not-less-than)

(less-than-or-equal -to not-greater-than)))

(defvar speed-check nil)

(setq speed-check '((faster fast) (quickly. fast) (quick fast) (slowly slow)
(slower slow)))

(defvar unit-check nil)

(setq unit-check '((hertz hz) (feet ft) (foot ft) (pounds lbs) (meters . m)
(metres .m) (meter m) (metre m) (kilometre . kin) (kilometer . kin)
(kilometres kI) (kilometers km) (inches . in) (knots kt3)))

(defvar unit-convert nil)L

(setq unit-convert '((hz frequency) (lbs weight) (tons displacement) (kts velocity)
(km distance) (in length) (m . length) (ft length)))

(defvar curclause nil)

(defvar default-confidence nil) I,
(setq default-confidence 100)

(defvar default-relation nil)

(defvar fnum nil)

(defvar framel nil)

(defvar mrrel nil)

(defvar mobj nil) '.

(defvar matt nil)

(defvar mval nil)

(defvar inconf nil)

(defvar confidence-convert nil)

(setq confidence-convert '((positively 100) (very-probably . 75) (probably . 5C)
(potentially . 25) (possibly . 0) (potentially-not . -25)
(probably-not -50) (very-probably-not -75) (not -100)))

*defvar direction-check nil)

3 4

.1%



*~~~. -. 3 . . - . - - . - . -J .7r -7. 1,;

Appendix H

(defvar pobJ nil)

(defvar patt nil)

(defvar pval nil)

(defvar sentence-type nil)

0.~ .

;;classify Identifies the basic structure of the sentence (one of seiven different structure types)

(defun classify (stunt)
"ClassifY examines the parse of a simple statement to determine vhat type of structure it

has.*
(prog (

(cond
((8s3Q 'copula-verb stunt)

(cond -

((a33q 'pred-noun stunt)
(return 1s4))
(T
(return 135)

(T
(cond

((assq 'objects stunt)
(cond

((assq 'direct-object stunt)
(cond

((assq 'complement stunt)
(cond

((assq 'noun-coup stunt)
(return IsS))
(T
(return Is?))))

(T
(return Is2))) 4%

(T
(return 's3)

(T
(return '31))))

;;Breaker separates the parse tree Into the component statements and returns the number of statements
in the parse

(defun breaker (Brule)
'Breaker separates the parse tree into the component statements and returns the number of

statements in the parse."
(pro; (subnUM 3ubstunt)

(setq brule (cddr brule))
(setq subnum 1)
1 oopl

* (3etq substunt (car brule))
(setq brule (cdr brule))
(cond

(substmt
(cond

((equal (car 3ubstnt) (cons 'simple-stnt subnum))
(set (intern (format nil 'SUBSTMT-D' subnum)) substunt)
(setq sUbnum (addi subnum))))

(go 10001))
- (T

(return subnum)))))

35



Appendix H

. ;;; Subject puts the subject of the sentence Into the global variable Imatt" and puts

;;; any prepositional noun or possessive noun Into "mobj.1 Zf there are adjectives modifying
;;; any of these, the subroutine Extract-adj Is called to make a separate Frame to Include
;;; each adjective.

(defun subject (subphrase) -

"Subject identifies the subject of the phrase supplied to It, as well as any prepositional
nouns. possessives, or modifiers.'

(prog (subi $ubsub temp pro) .,
;;; get the possessive noun first - If there Is one

(Cond
((setq temp (cdr (assq 'poss-noun subphrase)))
(setq mobj temp)
(setQ subphrase (extract-adj subphrase 'poss-noun mobj))
(SETO POW. tMOBJ)))

;;; get the subject of the sentence (If It is a
p;;; ronoun It takes the subject from the previous sentence.

(setQ sub1 (ldiff subphrase (memass 'eq 'prep-phrase subphrase)))
(cond

((setq pro (assq 'pronoun sub1))
(SETO MATT PATT))

((setq temp (cdr (assq 'noun sub1)))
(setq matt temp)
(seta subl (extract-adj subl (car (rassq matt sub1)) matt))
(SETO PATT MATT)))

;;; finds the noun In the prepositional phrase,
;;; If there is one

(cond
((setq subsub (memass 'eq 'prep-phrase subphrase))
(COND

((setq pro (assq 'pronoun subphrase))
(SETO OIL POBJ))(T(setq mobj (find-after 'preposition 'noun subsub))

(extract-adj subsub (car (rassq mobj subphrase)) mobj)
(SETO POW MOBJ)))))

(return T))

;;Predicate finds the predicate in the statement being exmined. It first decides vksether
;;; the verb in Question Is an active or a copula verb. If It Is a copula verb It searches for
;;; any adverbs that might qualify the verb, such as 'greater-than" or *less-then.' Xf the

l;;; copua verb Is 'equalsm or "isO It Is converted to something more uniform. The routine alao
;;; checks If there Is a confidence level Indicator following the copula verb, such as 'possibly or
;;; 'probably-not.'

• ;;; If the verb Is an active verb It is used as the relator. The routine checks for adverbs
;;; after the verb such as 'quickly' or 4quietly,' end, If any are found, converts them to
;;; their adjective form and creates a frame for them.

- (defun predicate (subphrase)
"Predicate Identifies the verb In the phrase or sentence supplied to It. It does not

return any variables; it does however set the global variable mrel, and it may change the
". global variable mconf..

(prog (kill subsub advrb END copverb att val temp)
(cond

;;; checks if the verb is copula

36

,' -

::,:) -.--..



r-k --- .%.L

Appendix H

((setq copverb (find-after 'predicate 'copula-verb subphtase))
(setq kill (Memass 'eq 'objects subphrase))%

W* (3etq subsub (ldiff subphrase kill))
(cond

((setq advrb (find-after 'predicate 'copula-adverb subsub))
(setq mrel (intern (format nil in-V--Dn copverb advrb))))

((eq copverb 'equals)
Csetq intel 'is-equal-to))

((eq copvetb 'is)
(setq intel 'is-same))
(T
(setq intel copverb)))

(cond
((setq advrb (find-after 'predicate 'confidence-level subsub))
(setq mconf (cdr (assq advrb confidence-convert))))))

;;The verb must be active
(T
(setq mrel (find-after 'predicate 'active-verb subphrase))
(SETO END (SEND (EVAL SENTENCE-TYPE) :ENDING))
(cond

,~;If the ending of the sentence Is nil
;;do not remiove the adverb If there Is anm
SIt w177 be used as the value of the

;;primery clause.
((NOT END))

;;Otherwise, remve any adverbs and
ake secondary clauses wIth them.

((setq advrb (cadr (memas 'eq 'adverb subphrase)))
(setq att (car advrb))
(setq val (cdr advrb))
(cond

((setq temp (assq val speed-check))

(setq val (cdr temp))))
(cond

((setQ temp (assq val direction-check))
(setq val (cdr temp))))

(setq curclause (append curclause (list

(reurnT))(list 'is-same matt att val default-confidence))))))))

(defun find-action (subphrase)
(prog (temp mod tel)

(setq inrel (find-after 'predicate 'active-verb subphra3e))
(cond

((setq teop (assq mrel action-convert))
(cond

((eq (cdr temp) 'assign)
(cond

((setq mod (assq 'level subphtase))
(setq tel (intern (format nil I-D--D-VALUE" (cdt temp) (cdr mod)))))
(T
(setq rel 'assign-value))))

(T
(setq rel (intern (format nil *-O-VALUEO (cdr temp))))))

(setq mrel 'is-saMO)
(setq aval tel)))

aEnding uses the sentence-type of the statemnt to determine what type or wlord should be the ending. .

,;It also checks the end of the sentence for a confidence-level. If It locates on t sets th glbe
variable Omconf. 

on 
iahn9 

a

37

ozS



7- -- . - 7*. . .. . . .. -2 777

Appendix H

(defun ending (phrase)
"Ending finds the word that should be placed in the global variable mval. and sets this

variables appropriately. It may change the value of mconf If ft locates a confidence-lovel
Indicator at the end of a sentence."

(prog (subphrase 3ubsub temp unit val end)
(3etQ subphra3e (mema3s 'eq 'predicate phrase))

;;; asking whatt type of ending to expec

(3etQ end (car (send (eval sentence-type) :ending)))

(cond 
;;Teedn Sanu

((eq (cdr end) 'noun)
(setQ mval (find-after (car end) (cdr end) 3ubphrase))
(SETO PVAL t4VAL)
(SetQ 3ubsub subphrase)
(extract-adj subsub *noun inval))

;The ending Is an adjective
;;or perhaps an adverb

(T
(cond

;;handles adjectives first
((setq SUBSUB (memass 'eq 'adjective subphrase))
(setq oival (cdadr subsub))
(SETO PVAL MVAL)

;;Changes the representation of
;;numeric masurements

(cond
((setq teMP (833Q 'unit subsub))
(cond

((setq unit (cdr (assq (cdr teup) unit-check))))
(T
(setq unit (cdr temip))))

(setq mval (Intern (format nil -D-D oval unit)))L
(SETO PYAL t4VAL))

;;Sets the global attribute matt to
;;the class of the adjective If the
;;variable hasn't Yet been set

(cond
((eq mnatt 'attribute)

(setq matt (caadr subsub))))
;;Eliminates the tme conses that
;;refer to the adjective

(setq subsub (delq (car subsub) subsub))
(setq subsub (delq (car subsub) subsub))
(cond

((memass 'eq 'adjective subsub) I
(extract-ad) subsub nil mobj))))

;;Looks for an adverb ending
((setq subsub (MemaS 'eq 'adverb subphrase))
(setq mnval (cdadr subsub))
(SETO PYAL MVAL)
(cond

((eq matt 'attribute)
(seta matt (caadr sub3ub)))))

;:Looks for a confidence leval clause
(cond

((setq Val (find-after 'predicate 'Clevel subphrase))
(Setq mconf Val)))

(return T)))

38



Appendix H

;;; Extract-adj finds all the qualifiers before the word contained In 'before' and creates a
;;; frame using the relation 'is-samo,' the word modified as the object, the classification
;;; of the modifier as the attribute and the modifier Itself as the value. The confldence-level
;;; Is always 100. After the frame has been created the modifier Is removed from the

"; statement to prevent It from being IfoundO again.

(defun extract-adj (subphrase before modified)
(prog (adj unit-type temp Ott val)

(loop while (setq adj (find-before before 'adjective subphrase)) do
(Cond

((eq (car ad) 'number)
(setq unit-type (find-after 'number 'unit subphrase))
(cond

% ((setq temp (assq unit-type unit-check))
(setq unit-type (cdr teamp))))

(setq val (intern (format nil "-O-0 (cdr adj) unit-type)))
(cond

((setq temp (find-after 'adjective 'quality subphrase))
(setq Ott (cdr (9ssq temp quality-check)))
(setq subphrase (delq (assq 'quality subphrase) subphrase))
(setq subphrase (delq (assq 'adjective subphrase) subphrass)))

((setq temp (assq unit-type unit-convert))
(setq att (cdr temp)))
(T
(setq att 'measure)))

(setq curclause (append curclause
(list (list 'is-same modified att val default-confidence))))

(setq subphrase (delq (assq 'adjective subphrase) subphrse))
(setq subphrase (delq adj subphraae))
(setq subphrase (delq (assq 'unit subphrase) subphrase)))

(T
(setq curclause (append curclause

(list (list 'is-same modified (car adj) (cdr adj) default-confidence))))

(setq subphrase (delq adj subphrase))
(setq subphrase (delq (assq 'adjective subphrase) subphrase)))))

(return subphrase)

.;;; Iake-ru7e takes the whole of the parse and controls Its conversion Into Lisp code. Zt goes
;;; through the parse by removing the first element from the parse list. Zf this Is a simple-statement
;;; then depending on Its sentence-type one or more of Subject, Predicate and Ending are called
;;; to Identify the various parts of the parse. The routine starts out assuming that all of the
;;; smpe-statements found are In the premise clause. When the routine encounters *Action"

;;; as the next element on the 7l:t then this default assumption is changed and the remaining
;;; statements are processed as action statements.

(defun make-rule (e-rule)
tlake-rule controls the translation of the parse-list into lisp code. Tt outputs

the Completed lisp rule.'
(prog (premise action substat subnum default-relation premise? )

(setq premise (list 'is-and))
(setq action (list '1s-and))
(setq subnum 1)
(setq premise? T)
(aetq default-relation 'is-and)
(set-va lues-defau it)
loopl
(setq mrel default-relation) L
(setq mconf default-confidence)
(setq substat (car e-rUle))
(setq e-rule (cdr a-rule))

(cond
(substmt

((eqal (car substmt) (cons 'simPle-strt subnum))

(setq substat (killer substat))
(setq sentence-type (Classify substm'.))
(sotq fnuea 1)
(cond 39

(premise?

........-

.-.- .¢..--.. . .. . ..-.... . . . -,. . . . ., . .. .... . - .. ., . ,
V k,



Appendix H

(setq mrel 'is-am*)
(cond

((assq 'declarative Substat) .6
(subject (idiff substiut (memass 'eq 'predicate saibstat.)))))

(predicate substat)
(ending substnt)
(cond

((eq .obj 'object)
(setq .obJ matt)
(setq matt 'attribute)))

(set' framel (list urel .obj matt mval mcon?))%
(setq curclause (append (list default-relation) (append (list fraudl)

curclause)))
(setq premise (append premise (list curclause)))
(setQ curclause nil)

(setq subnu. (addi sUbnUM,)))
(T
(cond
((assq 'declarative substnt)
(subject (ldlff substnt (meass 'eq 'predicate substat)))
(ending substat)
(predicate subsist))
((assq 'copula-verb substint)
(setq .obj matt)
(subject substat)
(predicate substnt))

(T
(subject substmt)
(find-action substat)))

(cond
((eq .obj 'object)
(setq .obj matt)
(setq mtt 'attribute)))

(setQ framel (list mrel .obj matt oival aeonf))
(setq curclause (append (list default-relation) (append (list framal)

curelause)))
(setq action (append action (list curelause)))
(setq curclause nil)
(3*tq subnm (addi subnum)))))

((eq (car substat) 'action)
(setq promise? nil)
(zetq default-relation 'conclude)
(set-values-default)))

(go loopM)
(T
(return (list promise action))))))

;:Set-evalues-c'fault sets the defaults f'or sawe of' the global variables wihose values ay change frequ
ently I
(defun set-values-default C

(prog (0
(setq mrel nil)
(setq .obj 'object)
(seto matt 'attribute)
(Setq wval 'value)))

;;:Kler gets rld of all the deadaood In the parse tree. .

(defun killer (word-array)
(prog(gatum)

loop
(cond
((setq getum (rassoc 'd word-array))
(setq word-array (dolq getuia word-array)))
(T
(return word-array)))

(go loop))
40



Appendix H

;;; find-after finds the first occurence of OpartO after the sentence-structure 6aftr'
(defun find-after (after part st)

(setq after (car (assq part inlst)))
(return after)))

;;; find-before finds the first occurance of 'part" before the sentence-structure Obeforel

(defun find-before (before part tnltst)
(prog ()

(return (cadr (memass 1eq part (ldiff nlist (memaSS eq before inlist)))))))

The following declaration and functions translae the lisp code generated

;;; by the translator back Into English, thus comptleting the ahole circle.

(DEFVAR pnum 0)

(defun print-rule (rule) L
(prog ( prem conc)

(setq pnum 0)
(setq prem (car rule))

(setq cone (cdr rule))
(format T *-% IF ")
(print-clause (cdr prom) T)
(format T * - THEN )
(print-clause (cdar conc) nil)))

(0efun print-clause (clause premise?)
(prog (Inc indent subsub verb)

(dolist (subphrase clause)

(setq pnum (add1 pnum))
(setq inc 0.1)
(setq indent "")
(setq subaub (cdr subphrasse))
(dolist (sentence subsub)

(setq sentence (car subsub))
(setq subsub (cdr subsub))
(cond

((eq (first sentence) '1s-same)
(cond

(premise?
(setQ verb 'Is))
(T

(CONO
((NEO INC 0.1)

(SETQ VERB 'MATCH))
(T
(setq verb 'set))))))

(T
(setq verb (first sentence))))

(cond
(premise?
(format T "-1 -d) The -d of the -d -d -d Indent (plus Inc pnu)

(third sentence) (second sentence) verb (fourth sentence)))

(T
(format T 8-D -d) -0 the -d of the -d to -dOin ndent (plus Inc pnu.) verb

(third sentence) (second sentence) (fourth sentence))))

(cond
((neq (fifth sentence) 100)
(format T 0 with confidence -d-. (fifth sentence)))
(T
(format T IM )))

(setq indent "
(setq inc (plus inc 0.1))))

41

.::.::.:.::: .::. : .: :. :...: :--:..,,::..:, :: ,: ::::.::.:..::.:: ::.::.:2 ::-:..:..:..:.::..-::.-:-:.:-:. ..-: .. : :: ::-: -:.-:.::.::-::-: .-.:: .:.:2.,::::

- -_: --.- ".:- ./ .,, ,',' .-. ' ,% .\ ,:;-.... ... ,..., '.... , ,. ,.,.. : ., . '.,', ,,." ,%,% -,. .. -.,. °,.. .- ,- ,



UNLIMITED DISTRIBUTION

UNCLASSIFIED

DOCUMENT CONTROL DATA R A 0
IS.CUM v clae.Soon of title. bedw of .tt~ct aid ies..ag anlatiog egmt to enered Wit" 11W aveei doasnegat n, tosmlu

DEFENCE RESEARCH ESTABLISHMENT ATLANTIC UNCLASSIFIED

J. DOCUMENT TITLE

Circe: A Natural Language Rule Translation System for Iritersensor

4 DESCRIPTIVE NOTES Irvve at r...anmd SASMUS astitI TECHNICAL COMMUNICATIONS

5 AUTI.OR4IIS (Loue naeY. bra2 norne. onodal. meitim

ELLIS, JAMES R., and DENT, C. Ann

6. DOCUMENT DATE NOEBRh951. TOTAL. NO. OF PAGES 7k). NO. Of A 12

Be. PROJECT OR GRANT NO. t. ORIGINATOR'S DOCUMEN4T NUMMER1IN

DREA TECHNICAL COMMUNICATION B5/314

Sb. CONTRACT NO. Wb OTHER DOCUMENT NO.51 Many em ebe s OW may 1
saw" a"

II. SUPPLEMENTARY NOTES 11. SPONSORING ACTIVITY

13. ABSTRACT

Circe is a set of functions written ink Lisp as an experiment in natural language processing.
It was developed for knowledge acquisition by the Intersensor system, a sonar knowledge-bastd
inference system. The main function of Circe inputs from either the keyboard or a file a rule
written in English and converts it into a Lisp-like data structure. This conversion takes place in
two steps: the English text is first parsed, and then the relevant information is extracted from
the resulting list arnd assembled into rules. These rules are then written to a file where they
can be used directly by the inference mechanism of Intersensor without further processing.

The paper briefly reviews prior research at DREA in this area, and contrasts the current
system with its predecessors, Implementation problems are discussed, and suggestions for
improvements are given.

43



UNCLASSIFIED

KEY WOND0S

NATURAL LAN'GUAGE PROCESSING
SYNTACTIC PARSING OF NATURAL LANGUAGE
AUOAI RNLTO FNATURAL LANGUAGE RNEFCSFR ~ EG CUSITO
AUOATI TLANAINEFAE NATR KLGUGE RCUESITO

* OBJECT-CENTERED PROGRAMMING

L

1. ORIGINATING ACTIVITY Enter the nslow end addres ofte " f OTH4EN DOCUMENT NUMBENS): If the document hes been
firgionateion otwing the document. -slp td eny Othear documuent ,uwmer Itiher by the erainsor

Or byO IP All, SWnoi.a enter Ita irAnber).
?i DOCUMENT SECURITY CLASS*1ICATION. Enteo ths owee

stocrwtty cteaafWcAt9on of ihe, documnent oandn tee waeming 10. OtSM'IUUTION STATEEN:Etraylmebo n
tems whenevrer eoptao. fuether dittonetmion of the docamt. other then then amoolsed

by Security cleasfcation. us"g standerd nowtemets - iac
2b. GROUP: enter tecur sty vectceawfistson group number. The three

prouteeareeineaod in Agaeds Mo h A eu~yNgttot III 'uhf ed retoettes way obtean cops of thet
doclutesu from their defence documentalson cowr."

3I DOCUMECNT TITLE: Enter the cilfmpple document title on eW
c~loutal tettlers, Titles or, oil ceose Should be unctetelied It a 121 "Awrntounet end dbaenumi"t~ of trdO uen

Sufficiently ~ ~ ~ ~ ~ ~ i dniw il lmrb a ihu lsii notiesurteedwanhoutarisr ampra fitem L
cain 00tteafication wit" the usual @tiselaposet-tett ori$ing etavfty.

it. 5U991.EMENTAR4Y NOTES: Use to eddltiemil septey
4 DESCRIPTIVE NOTES. Enter tot retepry of document. @.% Foote&

It-hricel resport. rechonical noote or technical letter. It mospri.r
etc, enter thte type ot itoaioins. e.g. interi. progress, 12. SPONSOR ING ACTIVITY: Enter the nae to the dem s hisoenw
tumnary. erna or fan&(. Give the 'nclus"t detets v~hea prolc le or teboretery aene-rlng Ow"e ree old
ltrcaic rieortin period is coveed. develoonient. ncueaddres.

S. AUTHOR41S): Enter the nals) a; wintorls) a Shown on Or 13. ABSTRACT: Enter en ebettect gar"n a brief end fedwlue
in the document. Enter tat noee firmt noes middle intial. asaimmery of the dcastint. *van twhot it their alt agows
If notitery, dhow, rank. The noe of shi principeil author it an olehehe in the body of the documsent Ittet. It is highly
absolute minimumn reQUtemnt. deasaebte that the ebetrec of classified docuTmt be Oumea

fled. Eact, PateIeoha of the aeeffect dhu end 10th as
6. DOCUMENT DATE: Enter the datai :month. vee) of Indications of the teatrlt ctsetilcion of the WIMfemtom

Estatotmet epproosl for puatton of the documeant. i the aergosp O Ilasse the dparnen "tSel ae uoelie
fallsetene as ITBI. MS. 1C0. 4111. er WI.

* 7s. TOTAL NUMBER OF PAGES The totel pop. count Should
fottow normal pegonetioan procedrot. i.e., rnter tMe numbe The length of the ebtrect Should be tlmitd ao 20 sat'om
of VeMt containflng information. &S ender typeswrittntine imat e ton lng.

7b NuImBER Of REFERENCES: Enter the total numbe ol 14. KEY WORDS: K~ey words we techisoftlty ittessmlagt tern. er
rferenes Cited in me0 documet, st h a plr thaet ctcterise e document end oul$d behep

in ceteloging the document. Key, -ord Should be asserted to
Ba PROJECT OR GRANT NUMBER. Iterpit. enter tfs, that ino security classticattion to required. Identales. waft to

*Motcable research end developmentt Isrotect or- Oent number esupitelrt modot desagineso. IShe ntone. mititey, poled - am*
Under wehich the d0Iomnt wet wratten. itnn. geogephic location. they be sted to key wdsbut will

to folowed by an ondclction of technicol caotet.
8b. CONTRACT NUMBER If espropriate. enter the applicable

nu.nbet under which the documtent well written.

9a~ ORiG NATORIS DOCUMENT NUMBERISI! Enter the
It .if loucument fournmlier by whi&. the eacument will be

0io tet and controliltd by the ouigiating ectivity. Thwt
L number mutto be niue to tits documeont.

44



7777Z:-

* FILMED

D' IC


